学科分类
/ 6
118 个结果
  • 简介:摘 要: 近年来我国玉米的产量直线上升,玉米作为酒精发酵的原材料,一直都是发酵生产中的重要内容。玉米作为原料,带动酒精产量的大幅度增长。酒精是我国一种重要的工业原料,运用的范围十分的广泛,如食品、医药等领域,具有着不容忽视的地位。因此,玉米作为酒精发酵的主要原材料,它在发酵过程中的手法、浓度等,都与酒精的质量息息相关。当下在进行酒精生产的过程中存在一些问题,亟需解决。

  • 标签: 玉米 酒精发酵 浓度较高
  • 简介:摘要:制药行业的污水通常含有各种类型的污染物,具有污染物浓度高、废水深度饱和、毒性和副作用大、可降解性差等特点,被归类为难处理污水。寻求有效的整改技术以促进经济发展,是目前不溶性制药废水行业急需解决的难题。本文专门介绍了近年来世界制药行业工业废水的处理方法,以期为合理解决制药工业废水问题提供一些参考。

  • 标签: 高浓度难降解制药废水 综合处理,技术
  • 简介:摘要:白酒酿造多是以小麦、高粱、玉米为主的原料生产,经过人工培养老窖、发酵、蒸馏、贮藏等工序为主,而白酒酿造产生的废水原因,多是由于在生产到贮藏过程当中出现的工业废水,在人们进行白酒酿造的过程当中,产生的工业废水要及时进行处理,以免对白酒酿造的过程带来不利的影响,非常不利于白酒酿造。基于此,本文主要从以下几个方面来展开相关性的研究,希望能够带来参考性的意见和建议。

  • 标签: 白酒酿造 高浓度废水 处理方法 研究
  • 简介:摘要:主要针对化工合成中高浓度有机废水处理技术展开深入研究,重点阐述了几点重要的处理技术,比如厌氧生物处理技术、好氧生物处理技术、聚合物吸附技术、雾化处理技术、电化学处理法以及湿法催化氧化处理技术等,将高浓度有机废水可能出现的危害降至最低,维护好生态环境,践行环境保护目标。

  • 标签: 化工合成 高浓度 有机废水处理
  • 简介:摘要:随着人们生活水平的提高,对生态环境的重视度也越来越高。在城市垃圾的处理过程中,垃圾渗滤液属于一种高浓度的氨氮废水,是水环境的主要污染物之一。为了有效的对垃圾渗滤液高浓度氨氮进行处理, MAP法应用日渐广泛。本文将结合实验分析 MAP法处理垃圾渗滤液高浓度氨氮的效果,为相关工作者提供参考借鉴。

  • 标签: MAP法 垃圾渗滤液 高浓度氨氮
  • 简介:摘要:随着科学技术以及经济的迅猛发展,我国在有机化学工业的生产技术取得了较大突破,成果显著,其中部分工艺技术水平处于国际领先地位。本文首先针对高浓度有机化工废水的物理和化学特点展开了深入的探究,有针对物化处理技术,在高浓度有机化工废水处理工作中的应用问题展开了深入的探究,希望能够为促进高浓度有机化工废水物化处理技术的发展提供一定的帮助。

  • 标签: 化工废水 物化处理 技术研究
  • 简介:摘要:分别研究了硫酸亚铁沉淀-活性炭吸附催化氧化两步静态和连续动态处理高炉煤气洗涤高浓度含氰废水的工艺。通过单因素法确定了静态处理的最佳工艺条件。在此条件下,两步法静态处理总氰和挥发氰的综合去除率分别为99.6% 、99.8%。将静态实验确定的工艺条件应用于连续动态实验过程,处理后的废水中挥发氰浓度低于0.5mg/L,废水达到国家排放标准要求。

  • 标签: 总氰化物 易释放氰化物 活性炭 硫酸亚铁 去除率
  • 简介:摘要:化工生产污染问题一直是业界重点关注的问题之一,我国对于化工企业的生产中的污染治理也进行了相关规定,要求化工企业做好污染治理工作,对于污染物要做到处理达标后排放。对于化工企业而言,对有机废水的处理是必须要解决的问题,也是一大难题,目前对化工合成高浓度有机废水处理的技术很多,需要化工企业结合自身的有机废水排放情况,选择合理的处理技术,确保废水处理达标,加速生态工业建设。本文探究化工合成高浓度有机废水处理技术的有效应用策略。

  • 标签: 化工合成 高浓度 有机废水 处理技术
  • 简介:摘要: 本文探讨了高浓度硫化氢废气制酸技术的研究与应用。硫化氢是一种常见的废气污染物,具有高毒性和可燃性。针对高浓度硫化氢废气处理的挑战,本研究提出了一种制酸技术,通过将高浓度硫化氢与氧化剂反应,生成硫酸。实验结果表明,该技术可以有效降低硫化氢浓度,并将其转化为有价值的产品,具有良好的经济效益和环境效益。本文详细介绍了该技术的工艺流程、反应机理以及操作条件等关键内容,并对其未来的应用前景进行了展望。

  • 标签: 高浓度硫化氢废气 制酸技术 氧化剂 硫酸 经济效益 硫磺
  • 简介:摘要:该工程处理的废水为某12英寸集成电路生产工序中产生的高浓度氨氮废水。针对氨氮废水浓度高、双氧水浓度高、生物处理难度大及废水排放标准日益严格的问题,该工程采用“两级氨氮吹脱+硫酸吸收”组合工艺处理高浓度氨氮废水,高效、稳定氨氮深度去除。结果表明:经组合工艺处理后,NH3-N,H2O2,满足《电子工业污染物排放标准》(二次征求意见稿)中的表2标准。氨氮废水处理系统运行稳定,运行经济合理。该工程运行效果稳定,投资及运行费用较低,处理工艺及设计参数对同类工程具有一定的参考意义。 关键词:氨氮废水;半导体;硫酸铵;吹脱 Abstract: The wastewater treated by this project is a high-concentration ammonia nitrogen wastewater produced in a 12-inch integrated circuit production process. Aiming at the problems of high ammonia nitrogen wastewater concentration, high hydrogen peroxide concentration, difficulty in biological treatment and increasingly stringent wastewater discharge standards, the project adopts the "two-stage ammonia nitrogen stripping + sulfuric acid absorption" combined process to treat high-concentration ammonia nitrogen wastewater with high efficiency and stable deep removal of ammonia nitrogen . The results show that: NH3-N2O2 Keywords: Ammonia nitrogen wastewater; semiconductor; ammonium sulfate; blow off 引言 12英寸半导体集成电路制造产生的废水成分复杂,污染物浓度高、毒性强,水质水量变化幅度大,处理工艺复杂。大部分半导体集成电路企业会根据自身情况对废水进行分类,对废水进行分质处理。主要分为:酸碱废水、含氟废水、CMP废水、CMP-Cu废水、TMAH废水、ORG废水和氨氮废水。 其中集成电路生产过程,在光刻和化学机械研磨等工序中,氨氮废水时使用氨水和双氧水清洗半导体基材而产生,有氨氮和双氧水浓度较高的特点。氨氮废水的处理方法主要分为四种:触媒法、吹脱法、生物法和生物+吹脱法。根据不同的进出水水质要求选择合适的处理工艺,则应用最多的方法是触媒法,其次是吹脱法,然后是生物法,最后是生物+吹脱法。[1] 本文主要介绍了某12 英寸半导体集成电路项目废水系统高浓度氨氮废水处理的工程实例,处理工艺及设计参数对同类工程具有一定的参考意义。 1 工艺设计 1.1 水质水量 该工程处理的废水为某12英寸集成电路生产工序中产生的高浓度氨氮废水,水量35m3/h。设计进出水水质如表1所示(注:本系统的出水水质为进入有机生物处理系统的水质)。 表1 高浓度氨氮废水处理系统设计进出水水质 氨氮废水 pH (无量纲) NH3-N(mg/L) H2O2(mg/L) 进水 9~11 <2500 <2500 出水 11~12 40 40 1.2 工艺概况 根据高浓度氨氮废水进出水的水质水量特点、处理要求及经济适用性,高浓度氨氮废水处理工艺如下: 1.2.1 工艺流程说明 该工程采用“两级氨氮吹脱+硫酸吸收”组合工艺处理氨氮废水。氨氮废水有高氨氮浓度和高双氧水浓度的特点,废水首先进入氨氮废水收集池,通过水泵将废水输送至氨氮废水pH调节池,在pH调节池中用NaOH将废水pH调节至11,保证后续吹脱工序的展开。pH调节池的氨氮废水通过水泵输送进入氨氮吹脱塔之前,需要通过一组两级的换热器对氨氮废水进行升温至55℃。氨氮吹脱塔分为两级,通过空气对氨氮进行吹脱,吹脱出来的氨氮通过随着空气进入硫酸吸收塔,通过硫酸进行吸收,制成硫酸铵,硫酸铵进入硫酸铵收集罐,最后将硫酸铵委外处理,资源化再利用,为企业带来一定的经济效益和社会效益;经过氨氮吹脱塔吹脱过得高浓度氨氮废水,进入有机系统的生化处理单元,为生化系统提供氮源。经两级氨氮吹脱工艺处理后,氨氮处理效率大于95%,产水NH3-N,H2O2。 本工艺根据进水高氨氮、高双氧水的特点,采用吹脱工艺,可以有效的同步去除氨氮和双氧水,产生的硫酸铵可以作为资源化产品委外处理,还可以得到一定的收益,降低了高浓度氨氮废水的运行成本。 1.2.2 主要构筑物设计参数 (1)氨氮废水收集池 设置氨氮废水收集槽1座,其有效容积为970m3,材质混凝土衬胶,水力停留时间为27h。 (2)氨氮废水调整槽 设置氨氮废水调整槽1座,其有效容积为20m3,材质FRP,水力停留时间为45min。 (3)氨氮废水换热器1 氨氮废水换热器1是两级换热器的第一级,将经过吹脱后的氨氮废水作为热源,将氨氮废水升温至35℃。换热器采用SUS316材质,设置1套,设计处理量为35m3/h。 (4)氨氮废水换热器2 氨氮废水换热器2是两级换热器的第二级,将半导体厂的蒸汽作为热源,将氨氮废水由35℃升温至55℃。换热器采用SUS316材质,设置1套,设计处理量为35m3/h。 (5)一级吹脱塔 氨氮吹脱塔常采用逆流操作,塔内装有一定高度的填料,以增加气—液传质面积从而有利于氨气从废水中解吸。常用填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。氨氮废水被提升到填料塔的顶部,使用布水器将水分布到填料的表面,通过填料往下流动,与气体逆向流动,空气中氨的分压随氨的去除程度增加而增加,随气液比增加而减少。一级吹脱塔设置1套,设计处理量35m3/h/套,φ3000×H10000mm,材质FRP,填料为拉西环。 (6)二级吹脱塔 一级吹脱塔设置1套,设计处理量35m3/h/套,φ3000×H10000mm,材质FRP,填料为拉西环。 (7)氨气吸收塔 氨气吸收塔常采用逆流操作,塔内装有一定高度的填料,带有氨气的空气从塔底进入,硫酸通过循环提升泵提升到填料塔的塔顶,使用布水器将水分布到填料的整个表面,通过填料往下流,与气体逆向流动,吸收氨气,制成硫酸铵溶液。通过测定循环硫酸的pH值,判断硫酸铵的浓度浓度达到25%的硫酸铵将被转移至硫酸铵收集罐中,进行委外处理。[2]氨气吸收塔设置1套,设计处理量35m3/h/套,φ3000×H10000mm,材质FRP,填料为拉西环。 (8)硫酸铵收集罐 设置硫酸铵收集罐1座,其有效容积为15m3,材质FRP。

  • 标签:
  • 简介:摘要:在我国社会经济不断发展的背景下,我国化工行业以及冶炼行业发展速度较快,但是在发展的同时会产生大量的烟气排放物,其中高浓度氮氧化物烟气占有很大比例,是当前我国大气污染的主要污染物之一,同时也是大气污染治理的难题,会对大气环境以及生态环境造成很大的影响,所以需要加强此类污染烟气的处理技术创新。本文对高浓度氮氧化物烟气处理技术和应用进行了深入地研究与分析,并提出了一些合理的意见和措施,旨在进一步促进我国高浓度氮氧化物烟气处理技术水平提升,从而加强对大气环境的保护。

  • 标签: 高浓度 氮氧化物烟气 处理技术 处理装置 应用优化
  • 简介:摘要:现如今,我国的化工业获得了极大的发展,很多产业受益于化工业的发展而获得了很大的利益。但是,化工业的发展也让更多的化工废水以及人民生活后产生的废水排放增多,这不仅让废水的处理更为复杂还导致我国的环境污染加重。所以,化工产业的进步不仅为工业的发展提供了极大的帮助,还影响导致更多高浓度的有机废水从工厂和家庭生活环境中产出。因此,本文通过分析高浓度有机废水的处理技术,从而为如何处理这些有机废水以及处理技术未来的发展发展做出解释,并为行业的发展提供一些思路。

  • 标签: 化工合成 高浓度有机废水 处理技术
  • 简介:摘要:化工合成技术作为我国关键的工程技术,在现代化工业领域广泛应用,具备重要技术手段。虽然化工合成可带来经济利益,增强应用领域,但其合成过程中产生大量废水,未经有效处理可能对环境造成严重污染,包括土壤和水体。当前,我国秉承绿色发展战略,以适应国家发展目标,必须全面应用、优化化工高浓度有机废水,确保有效处理甚至回收。因此,本文将深入探讨化工高浓度有机废水处理技术,分析其对环境的危害,提出合理有效的处理方法。

  • 标签: 化工合成 高浓度有机废水 处理技术 对策分析
  • 简介:摘要:文章以高浓度工业园区废水中水解酸化为研究对象,从类型选择、进水系统选择、工艺设计要点等方面进行研究分析,在实际应用案例的基础上总结要点,为工业园区水解酸化提供设计与运营参考。

  • 标签: 高浓度,工业园区废水 水解酸化 设计要点
  • 简介:摘要:目前,工业废水和城市生活废水是我国水环境污染的污染源之一,尤其是随着生产规模的不断扩大及工业技术的飞速发展,含有高浓度有机废水的污染源日益增多。全国各地的大中小型化工企业如雨后春笋般涌现出来,大大满足了人们对各类化工产品的需求。但是由此带来的化工废水污染问题也成为迫在眉睫需要解决的问题,因此,本文对高浓度难降解有机化工废水处理技术进行了探讨。

  • 标签: 高浓度难降解 有机化工废水 处理技术
  • 简介:摘 要:化工企业在进行产品的加工、合成时,通常在材料、资源方面加大投入力度,因而就造成了化工废水中容易出现高浓度有机废水的出现。对于化工合成中高浓度有机废水的处理往往需要运用物理、生物及化学三种处理技术,通过层层把关,落实众多处理技术,将高浓度有机废水中的毒性、油性、重金属性物质降到最低。因此,主要对化工合成中高浓度有机废水处理方面进行了分析,为化工企业高浓度有机废水的处理提供一定措施。

  • 标签: 化工合成 高浓度有机废水 处理技术