简介:以钴粉、氧化钇和草酸铵为原料,采用均匀沉淀法制备Co-Y2O3的前驱体,经氢还原后得到Co-Y2O3复合粉末,研究反应溶液中CoCl2浓度、YCl3与CoCl2的物质的量比n(YCl3)/n(CoCl2)以及表面活性剂对Co-Y2O3复合粉末形貌和粒度的影响。结果表明:YCl3与CoCl2的物质的量比以及表面活性剂对Co-Y2O3复合粉的形貌都有很大影响。当n(YCl3)/n(CoCl2)的值由0增加到0.014时,复合粉形貌由棒状转变为梅花状;当n(YCl3)/n(CoCl2)进一步增大到0.040和0.078时,复合粉分别为絮状和粗棒状;向n(YCl3)/n(CoCl2)为0.014的混合溶液中加入十二烷基硫酸钠时,复合粉末形貌由梅花形转变为球形。CoCl2的浓度c(CoCl2)对复合粉末粒度和分散性有较大影响。随c(CoCl2)从0.2mol/L增加到0.5mol/L,复合粉末的平均粒度由7μm减小到4μm,并且粉末的分散性更好;当c(CoCl2)增加到0.8mol/L时,粉末的平均粒度增大到10μm,粉末的分散性变差。
简介:以金属Zr、Cu和Al为原料,通过真空熔炼和气体雾化制备Zr-Cu-Al合金粉末,再经高能球磨得到Zr50Cu40Al10非晶合金粉末。采用氮/氧分析仪、X射线衍射仪(XRD)、扫描电镜(SEM)和热分析仪(DSC)对其非晶形成能力及晶化行为进行研究。结果表明,球磨120h后可获得Zr50Cu40Al10非晶合金粉末,且随球磨时间增加,粉末的颗粒尺寸逐渐减小,90h后达到亚微米级。球磨过程中由于铁的增加,使合金的结构"混乱度"增加、负混合热增大,因而热稳定性增强,其过冷区间ΔTx为62K,约为雾化法制备的非晶合金粉末的2倍。此外,采用非等温晶化方法,用KISSINGER方程计算出机械合金化Zr50Cu40Al10非晶合金的玻璃转变和初始晶化的表观激活能分别为152.6kJ/mol和172.4kJ/mol,远小于相应的气体雾化法制备的Zr50Cu40Al10非晶合金粉末表观激活能,其原因是粉末中氧含量和体系自由能较高。
简介:用氩气雾化法制备的Zr(50)Cu(40)Al(10)非晶粉末作为填充材料,采用热压工艺制备非晶/聚苯硫醚(PPS)树脂复合材料,对材料的摩擦磨损性能进行检测,分析磨损机理,并与Al2O3颗粒作为填料的PPS树脂基复合材料进行对比。结果表明:以Zr(50)Cu(40)Al(10)非晶颗粒作为填充物,可降低PPS的摩擦因数,减小磨损量,对于PPS树脂材料抗磨性能的提升效果优于传统无机填料Al2O3。随非晶颗粒含量(体积分数)从0增加到40%,复合材料的摩擦因数与磨损量均逐步降低而后略有增加,磨损机理则从粘着磨损过渡到磨粒磨损,最终转为疲劳磨损。30%Zr(50)Cu(40)Al(10)/PPS复合材料的质量磨损仅为纯聚苯硫醚的20.4%。Zr(50)Cu(40)Al(10)非晶颗粒与摩擦副发生化学反应,参与转移膜的形成,并提高转移膜与摩擦副的结合强度,减少摩擦副表面的微凸体,从而降低摩擦副对复合材料基体的磨损。
简介:将Fe(60)(NbTiTa)(40)合金粉末与纯铁粉分别进行45h高能球磨,获得Fe(60)(NbTiTa)(40)非晶粉末和粒度约10μm的铁粉,然后通过放电等离子烧结制备Fe(60)(NbTiTa)(40)体积分数分别为5%、10%、15%和20%的Fe(60)(NbTiTa)(40)颗粒增强铁基复合材料,研究15%Fe(60)(NbTiTa)(40)/Fe混合粉末的烧结致密化行为和Fe(60)(NbTiTa)(40)非晶粉末含量对材料力学性能的影响。结果表明:Fe(60)(NbTiTa)(40)合金粉末经球磨45h后转变成非晶态,其过冷液相区达到112℃。通过SPS可实现混合粉末的快速致密成形,增强颗粒含量对复合材料的密度影响不大,材料的致密度在97.5%左右。非晶合金粉末的加入可细化基体相的显微组织,并且随Fe(60)(NbTiTa)(40)颗粒含量增加,基体相变得更细小和更均匀,复合材料的硬度和强度均显著增大。20%Fe(60)(NbTiTa)(40)/Fe材料的显微硬度为232HV,屈服强度和极限压缩强度分别为650MPa和743MPa。
简介:采用座滴法研究反应烧结(Reactionbonded)SiC/Co-Si体系在真空中的润湿性及界面反应,并研究Si含量和实验温度对润湿角的影响。结果表明,元素Si对反应烧结(RB)SiC/Co-Si体系的润湿性有显著影响,当Co-Si钎料粉体中Si含量(质量分数)为6.7%和60%时,体系的最终润湿角都低于SiC/纯Co体系。SiC/Co-Si体系的润湿过程属于反应性润湿,随着温度升高,润湿角明显减小。微观结构研究和XRD相分析表明,对于SiC/Co-3Si体系(Co-3Si钎料中Si的质量分数为3%),界面区域发生了化学反应,反应产物为CoSi和碳,同时发生元素的互扩散,形成反应中间层;对于SiC/Co-60Si体系,界面反应产物只有CoSi2,界面区域没有存留碳。界面反应改变体系的界面结构,从而改善体系的润湿性。
简介:以溶胶-喷雾干燥-热还原制备的纳米晶W-Cu复合粉末为原料,通过球磨改性、叠层压制和一步液相烧结分别制备3种两层梯度复合细晶W-Cu材料(W-10Cu/W-30Cu,W-20Cu/W-30Cu和W-30Cu/W-50Cu),对其致密度、组织成分特征及界面结合性能进行研究与分析。结果表明:3种梯度材料各均质层都达到高致密(相对密度〉98%);梯度材料具有明显的梯度组织,界面结合完好,Cu相呈连续网状结构,包裹在均匀分布的细小W晶粒周围;成分呈阶梯式变化,各层成分因Cu相的迁移和流失与初始设计值有一定的偏差;材料力学性能呈现梯度性,界面显微硬度处在两层显微硬度之间,结合强度高于各自富Cu层的拉伸强度,表明纳米复合W-Cu功能梯度材料各成分层之间有着优良的结合性。
简介:微波合成因合成速度快、清洁和能效高而成为一种非常有前途的材料制备方法。与常规方法相比,很多材料可以在相对较低的温度和较短的时间内用微波加热合成。该文作者利用混合微波加热技术,在短时间内由镁粉、镍粉和石墨粉合成了具有立方钙钛矿结构的金属间化合物超导材料MgCNi3。利用微波加热合成的MgCNi3,镁的挥发和氧化程度明显减少。粉末X射线衍射显示合成的样品主相为MgCNi3,还含有少量未反应的石墨粉和微量的MgO杂相。金相显微镜和扫描电镜观察表明超导样品的晶粒大小一般为2~6μm。由标准的四探针电阻方法和磁测量技术测得样品的超导起始转变温度为6.9K,转变宽度约为0.8K。
简介:采用金属粉型药芯焊丝自保护明弧焊制备Cr9Mn6Nb2WVSiTi奥氏体耐磨堆焊合金,借助XRD,SEM,EDS及光学显微镜研究外加WC颗粒对其显微组织及耐磨性的影响。结果表明,随焊丝药芯中WC增加,奥氏体晶粒细化,沿晶分布的多元合金化碳化物数量增加。初生γ-Fe相原位析出了(Nb,Ti,V)C相和残留WCx颗粒,起到晶内弥散强化作用,沿晶分布的(Nb,Ti,V)C和M6C(M=Fe,Cr,Mn,V,W)相隔断了网状或树枝状的沿晶M7C3相,使其细化、断续分布而提高合金韧性,减轻沿晶碳化物数量增加的不利影响。硬度和磨损测试结果显示,明弧堆焊奥氏体合金洛氏硬度仅为40~47,但其磨损质量损失低于高铬铸铁合金,具有良好耐磨性;随外加WC含量提高,奥氏体合金晶内和晶界显微硬度差异显著减小,合金表面趋于均匀磨损而改善耐磨性。该奥氏体合金的磨损机制主要是磨粒显微切削,适用于带有一定冲击载荷磨粒磨损的工况下使用。
简介:采用选择性激光熔覆法,在基板温度分别为100,150,和200℃条件下制备M2粉末高速钢合金,分析基板温度对合金组织结构与力学性能的影响。结果表明,基板温度升高有利于提高M2粉末高速钢的致密度和整体组织的均匀性。当基板温度为200℃时,高速钢组织均匀致密,各元素固溶程度高,且碳化物含量高,组织中柱状晶不再沿Z轴方向单一生长,同时合金的显微硬度(HV0.1)达到最高,HV0.1为1150,相比基板温度为100℃时的合金提高近40%。随基板温度从100℃升高到200℃,沿Z轴打印的M2高速钢室温抗拉强度从865.23MPa降低到443.85MPa,主要原因是合金中单一方向的柱状晶数量减少。